STUDENT'S NAME: _____

TEACHER'S NAME:

HURLSTONE AGRICULTURAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 4

Mathematics Advanced

General Instructions	 Reading time – 10 minutes Working time – 3 hours Write using a black or blue pen NESA approved calculators may be used A reference sheet is provided in the Section I booklet
	• For questions in Section II, show all relevant mathematical reasoning and/or calculations
	• This examination paper is not to be removed from the examination centre
Total marks: 100	Section I – 10 marks (pages 3 – 7)
	 Attempt Questions 1 – 10. The multiple-choice answer sheet has been provided
	• Allow about 15 minutes for this section
	Section II – 90 marks (pages 13–44)
	 Attempt Questions 11 – 16, write your solutions in the spaces provided.
	• There are 6 separate question/answer booklets. Extra working pages are available if required.
	- 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

• Allow about 2 hours and 45 minutes for this section.

Disclaimer: Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2022 HSC Mathematics Advanced Examination.

SECTION I (10 marks)

Attempt Questions 1 - 10

Allow about 15 minutes on this section.

Use the multiple-choice answer sheet provided for Questions 1 – 10.

- 1. Given $f(x) = x^2 + 4x^3$. For what values of x is the function decreasing?
 - (A) $-\frac{1}{6} < x < 0$ (B) $\frac{1}{6} > x > 0$ (C) $x > -\frac{1}{6}$ or x < 0(D) $x < -\frac{1}{6}$ or x > 0
- 2. Suppose the weight of melons is normally distributed with a mean of μ and a standard deviation of σ .

A melon has a weight below the lower quartile of the distribution but NOT in the bottom 10% of the distribution.

Which of the following most accurately represents the region in which the weight of this melon lies?

- 3. What is the difference between a discrete random variable and a continuous random variable?
 - (A) A discrete random variable takes all values in an interval of numbers while a continuous random variable has a fixed set of possible values with gaps between them.
 - (B) A discrete random variable has a fixed set of possible values with gaps between them while a continuous random variable takes all values in an interval of numbers.
 - (C) A discrete random variable takes only negative numbers while a continuous random variable takes both positive and negative numbers.
 - (D) A discrete random variable takes both positive and negative numbers while a continuous random takes only negative numbers.

4. The diagram below shows part of the graph of $y = a \sin(bx) + 4$.

What are the values of *a* and *b*?

- (A) a = 3 $b = \frac{1}{2}$ (B) a = 1.5 $b = \frac{1}{2}$
- (C) a=3 b=2 (D) a=1.5 b=2

5. A scatterplot of pain (as reported by patients) compared to the dosage (in mg) of a drug is shown below.

How could you describe the correlation between the pain and the dosage?

- (A) A moderate negative correlation (B)
- (B) A moderate positive correlation
- (C) A weak positive correlation.
- (D) No correlation.
- 6. Given that $\int_{2}^{6} f(x)dx = 3$, what is the value of $\int_{4}^{6} f(2(x-3))dx$? (A) $\frac{1}{2}$ (B) $\frac{3}{2}$
 - (C) 3 (D) 8

7. What is the value of the derivative of $y = 2\sin 3x - 3\tan x$ at x = 0?

(A)	-1			(B)	0

- (C) 3 (D) -9
- 8. A school collected data related to the reasons given by students for arriving late. The Pareto chart shows the data collected.

What percentage of students gave the reason 'Appointment'?

- (A) 24% (B) 19%
- (C) 42% (D) 86%

9. The graph of the function $y = \ln(x + 1)$ is shown in which of the graphs below?

- 10. What is the derivative of the function $y = (e^{2x+1})^3$?
 - (A) $(2e^{2x+1})^3$ (B) $3(e^{2x+1})^2$ (C) $3(e^2)^2$ (D) $6(e^{6x+3})$

Name: **SECTION II** 90 marks **Attempt Questions 11 - 16** Allow about 2 hours and 45 minutes on this section. Answer each question in the spaces provided. Extra working space is available after each question. If you need to use this extra space, you must clearly indicate this in the main solution space, and then clearly indicate the question number and part that you are answering in the extra space. For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations. 2022 Mathematics Advanced Trial Examination Section II **Question 11 (15 marks)** Marks (a) The graph of y = f(x) is shown below 2 V. (1, 3)x 0 2

On the graph above sketch the graph of y = 2f(-x)+1, labelling the *y*-intercept and the co-ordinates of the stationary points.

(i)	Find the two stationary points and determine their nature.	
(ii)	Sketch the graph of the function, clearly showing the stationary points and the x and y intercepts.	

(c) In the figure shown below, a cylinder of radius r cm and height h cm is inscribed in a closed container in the shape of a rectangular prism with a square base.

The total surface area of the container is 216 cm^2 .

HAHS 2022 Mathematics Advanced Assessment Task 4

Page 15 of 44

(iii) Thence, find the value of 7 such that the volume of t	ne cynnder is greatest. 3
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	The a and b are constants. 2 alues of a and b .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	The a and b are constants. 2 alues of a and b .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by $y = x^2 + ax + b$, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by y = x ² + ax + b, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re <i>a</i> and <i>b</i> are constants. 2 alues of <i>a</i> and <i>b</i> .
(d) The equation of a curve <i>C</i> is given by y = x ² + ax + b, when The tangent to <i>C</i> at (0, 5) passes through (5, 20). Find the v	re a and b are constants. alues of a and b.

If you use this space, clearly indicate which question you are answering.

	Name:	
Question 12	(15 marks)	Marks
(a) The	enth term of an arithmetic series is 29 and the fifteenth term is 44	
(i)	What is the common difference?	1
(ii)	What is the first term?	
		1
(iii)	Find the sum of the first 85 terms.	1
(b) For th Show	the given series $(2^1 + 3) + (2^2 + 3) + (2^3 + 3) + (2^4 + 3) + \dots$ that the sum of the first <i>n</i> terms is given by $2^{n+1} - 2 + 3n$	2

(c) Jayden works in a Moolworths store and he is making a stack of oranges against a sloping display panel.

The oranges are stacked in layers, as shown, where each layer contains one orange less than the layer below it.

		Top Layer		
	When I on. There a	he has finished, there are five oranges in the top layer, six in the next are n layers altogether.	t and so	
	(i)	Show there are $\frac{1}{2}n(n+9)$ oranges in the stack.		2
	(ii)	If Jayden has 300 oranges to create his display, how many full rows create, if the top row still contains five oranges?	s can he	2
HAHS 2	022 Mat	hematics Advanced Assessment Task 4	Page 20 of 44	

G	Show with calculations why this geometric series has a limiting sum	1
(1)	Show with calculations why this geometric series has a limiting sum.	1
()		•
(11)	Find the exact value of the limiting sum with a rational denominator.	2
(e) Evalu	ate the definite integral $\int_{1}^{2} 2x^{2} (x^{3} - 8)^{3} dx$. Give your answer as a fraction in its	
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simpl	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simpl	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simpl	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simpl	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3
(e) Evalu simple	ate the definite integral $\int_0^2 2x^2 (x^3 - 8)^3 dx$. Give your answer as a fraction in its est form.	3

2022 Mathematics Advanced Trial Examination Section II	
Name:	
Question 13 (15 marks)	Marks
(a) X is a continuous random variable that is defined by the probability density function	
$f(x) = \begin{cases} k(x-1)^2 & 2 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$	
(i) Show that $k = \frac{3}{26}$.	2
(ii) Find the cumulative distribution function of <i>X</i> .	2

(b) In Br mear devia	oken Hill, the maximum temperature for each day has been recorded. The of these maximum temperatures during spring is 25.8°C, and their standard tion is 4.2°C.
(b) In Br mear devia (i)	oken Hill, the maximum temperature for each day has been recorded. The of these maximum temperatures during spring is 25.8°C, and their standard atton is 4.2°C. What temperature has a z-score of -1 ?.
(b) In Br mear devia (i)	oken Hill, the maximum temperature for each day has been recorded. The a of these maximum temperatures during spring is 25.8°C, and their standard ation is 4.2°C. What temperature has a z-score of –1?.
(b) In Br mear devia (i)	oken Hill, the maximum temperature for each day has been recorded. The of these maximum temperatures during spring is 25.8°C, and their standard atton is 4.2°C. What temperature has a z-score of -1?.
(b) In Br mear devia (i)	oken Hill, the maximum temperature for each day has been recorded. The of these maximum temperatures during spring is 25.8°C, and their standard tion is 4.2°C. What temperature has a z-score of –1?. What percentage of spring days in Broken Hill would have maximum temperatures between 21.6°C and 38.4°C?
(b) In Br mear devia (i)	oken Hill, the maximum temperature for each day has been recorded. The of these maximum temperatures during spring is 25.8°C, and their standard tion is 4.2°C. What temperature has a z-score of –1?. What percentage of spring days in Broken Hill would have maximum temperatures between 21.6°C and 38.4°C?
(b) In Br mear devia (i)	oken Hill, the maximum temperature for each day has been recorded. The of these maximum temperatures during spring is 25.8°C, and their standard tion is 4.2°C. What temperature has a z-score of –1?. What percentage of spring days in Broken Hill would have maximum temperatures between 21.6°C and 38.4°C?
(b) In Br mear devia (i) (ii)	oken Hill, the maximum temperature for each day has been recorded. The of these maximum temperatures during spring is 25.8°C, and their standard tion is 4.2°C. What temperature has a z-score of –1?. What percentage of spring days in Broken Hill would have maximum temperatures between 21.6°C and 38.4°C?

(c) A continuous random variable X has a uniform distribution over the interval (4,7).

Find $P(4.1 \le X \le 4.8)$

(d) The weight, in grams, of beans in a tin is normally distributed with a mean μ and standard deviation of 7.8.

Given that 10% of tins contain less than 200 g, find the value of μ Use the *z* score table extract given below.

z	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00
-2.2	0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139
-2.1	0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179
-2.0	0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228
-1.9	0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287
-1.8	0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359
-1.7	0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446
-1.6	0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548
-1.5	0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668
-1.4	0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808
-1.3	0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968
-1.2	0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151
-1.1	0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357
-1.0	0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587
-0.9	0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841
-0.8	0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119

2

1

given	by	
	$f(x) = \begin{cases} \frac{3}{125} x(5-x) & 0 \le x \le 5 \end{cases}$	
	0 otherwise	
(i)	Find the probability that the light bulb fails in within two year?	
(ii)	Given that a standard lamp is fitted with two such new bulbs and that their failures are independent, find the probability that exactly one bulb fails within two years?	
	End of Ouestion 13	

There are the same number of students above 175 cm in Year 11 as there

are students above 175 cm in Year 12. If there are 140 students in total in Year 11,

Question 14 (15 marks)

how many students are in Year 12?

(a) The box-plot below shows the heights of students in Year 11 and Year 12 at a particular school.

Name:

2022 Mathematics Advanced Trial Examination Section II

HAHS 2022 Mathematics Advanced Assessment Task 4

2

Marks

(b) A group of children were surveyed on the number of hours each week that they spent exercising and watching television. The results are shown in the table and scatterplot below.

(c) Data from 200 recent house sales are grouped into class intervals and a cumulative frequency histogram is drawn.

By completing the table, calculate the mean house price.

Class Centre (\$'000)	Frequency

2

(d) Consider the data set given in the frequency table below.

Score	Frequency
2	3
3	4
4	2
5	1

 (i)
 Find the mean and population standard deviation for this data set.
 2

 (ii)
 If a score of 9 is added to this data set, explain what will happen to the mean and standard deviation. Justify your answer.
 2

correlation coefficient information?	nt of $r = 0.9$. What conclusions can you draw from this	1
f) It is given that a data for recognising the of A set of data has a lo What is the maximum	a value below $Q_1 - 1.5 \times IQR$ or above $Q_3 + 1.5 \times IQR$ is the criteria outliers. ower quartile (Q_1) of 10 and an upper quartile (Q_3) of 16. m possible range for this set of data if there are no outliers?	2
	End of Question 14	

estion 15 (15 marks)	Marks
(a) If $\cos \alpha = -\frac{4}{5}$ and $\sin \alpha < 0$, find the exact value of $\tan \alpha$.	2
(b) Solve $2\sin x \cos x = \sin x$ for $0 \le x \le 2\pi$.	3

(c) The diagram below shows the graph $y = 2\cos x$.

Y≬ Р A С D π x0 2π B 1 (i) State the coordinates of *P*. Evaluate the integral $\int_{\frac{3\pi}{2}}^{2\pi} 2\cos x \, dx$. (ii) 2 Indicate which area in the diagram, A, B, C or D, is represented by (iii) 1 the integral $\int_{\frac{3\pi}{2}}^{2\pi} 2\cos x \, dx$. Page 36 of 44

HAHS 2022 Mathematics Advanced Assessment Task 4

(iv) Using parts (ii) and (iii), or otherwise, find the area of the region bounded by 1 the curve $y = 2\cos x$ and the x-axis, between x = 0 and $x = 2\pi$. Using the parts above, write down the value of $\int_{\frac{\pi}{2}}^{2\pi} 2\cos x \, dx$. (v) 1 (d) Show that $\frac{\sec\theta - \sec\theta\cos^4\theta}{1 + \cos^2\theta} = \sin\theta\tan\theta$ 2 (e) Differentiate $\frac{\sin x}{x}$. 2 **End of Question 15** HAHS 2022 Mathematics Advanced Assessment Task 4 Page 37 of 44

022 Mathematics Advanced Trial Examination Section II Name:	
uestion 16 (15 marks)	Marks
(a) By first writing the function $y = 7^x$ in logarithmic form, show that its derivative is $7^x \ln 7$.	2
(b) A particle is accelerating according to the function $a = -\frac{3}{t^2} \text{ ms}^{-2}$. If, when $t = 0.5 \text{ s}$, its velocity, $v = 6 \text{ ms}^{-1}$ and its displacement, $x = 1 \text{ m}$, find the particle's displacement function in simplest form.	3

(c) Solve the equation $e^{x-1} - 2 = 0$, giving your answer correct to 2 decimal (i) 1 places. Evaluate the definite integral $\int^{2} (e^{x-1}-2) dx$. 2 (ii) Explain why your answer in (ii) does not give the area under the curve (iii) 1 $y = e^{x-1} - 2$ between the lines x = 1 and x = 2. (Note: it is not necessary to calculate the area).

(e) Cons	Fider the function defined by $f(x) = e^{2x} (1-x)$.	
(i)	Copy and complete the table of values, giving your answers correct to 2 dec. pl. $\frac{x - 3 - 2 - 1 0 1}{f(x) 0.01 1 1 0}$	1
(ii)	Using the trapezoidal rule with five function values, approximate the area under the curve $y = f(x)$, between $x = -3$ and $x = 1$.	2

(iii) The graph of $y = e^{2x} (1-x)$ is shown below.

Decide whether your approximation in (ii) above is an over-estimate or an under-estimate of the true value of the area under the curve. Give a brief reason for your answer. [Note: Do not attempt to integrate the function.]

End of Question 16

End of Paper

Yr 12 Mathematics Advanced Trial Marking Guidelines

Multiple Choice Solutions

Question 1

 $f(x) = x^2 + 4x^3$ $f'(x) = 2x + 12x^2$

For the function decreasing, f'(x) < 0,

then
$$2x + 12x^2 < 0$$

 $2x(1+6x) < 0$
 $\therefore -\frac{1}{6} < x < 0$

Answer A

Question 2

Answer C

Question 3

Answer B

Question 4

 $y = a\sin(bx) + 4$

The graph of $y = \sin x$ has been translated 4 units up.

Observing the given graph the maximum displacement of the graph from the mean position (y = 4) is ± 1.5 units.

 \therefore Amplitude *a* = 1.5

Observing the given graph the period of the graph is π units

$$Period = \frac{2\pi}{\pi} = 2$$
$$\therefore b = 2$$

Answer D

Question 5

A moderate negative correlation

Answer A

Question 6

$$\int_2^6 f(x) dx = 3$$

As f(2x) is a horizontal dilation of f(x), the graph is compressed horizontally by a factor of $\frac{1}{2}$. This means that the range is unchanged but the domain is halved thereby halving the the area under the graph

$$\int_{1}^{3} f(2x) dx = \frac{1}{2} \int_{2}^{6} f(x) dx = \frac{3}{2}$$

Horizontally translating the graph three units to the right gives:

$$\int_{4}^{6} f(2(x-3)) dx = \frac{3}{2}$$

Answer B

Question 7

$$y = 2\sin 3x - 3\tan x$$

$$\frac{dy}{dx} = 2(3)\cos 3x - 3\sec^2 x$$

at $x = 0$

$$\frac{dy}{dx} = 6\cos 0 - 3\sec^2 0 = 6 - 3 = 3$$

Answer C

Question 8

Look at the change in cumulative percentage from 'Family' to 'Appointment'.

Answer B

Question 9

Horizontally translate the graph of $y = \ln x$ one unit to the left.

When

$$x = 0$$

$$y = \ln(x+1) = \ln 1 = 0$$

The graph to pass through (0,0)

Answer B

Question 10

$$y = \left(e^{2x+1}\right)^3 = e^{6x+3}$$
$$\frac{dy}{dx} = 6e^{6x+3}$$

Answer D

2022 Y12 Trial	Maths Advanced
----------------	----------------

Question 11

Solutions and Marking Guidelines

Outcomes Addressed in this Question

MA11-1 -uses algebraic and graphical techniques to solve, and where appropriate, compare alternative solutions to problems

MA11-2 -uses the concepts of functions and relations to model, analyse and solve practical problems MA11-5 -interprets the meaning of the derivative, determines the derivative of functions and applies these to solve simple practical problems

MA12-3 -applies calculus techniques to model and solve problems

Outcome	Solutions	Marking Guidelines
MA11-1 MA11-2	a)	2 marks for correct
	(-1 ₂ 7) ^y	solution
	2f(-x)+1 $f(x)$	1 mark for correct shape after transformation
	$f(-x) \qquad (-2, 1) \qquad (1, 3) \qquad (1, 3) \qquad (-2, 1) $	1 mark for min, max and <i>y</i> -intercept
	155	
MA11-5	b)1)	
	$f(x) = (x-2)^2(x+1)$	
	$f'(x) = (x-2)^2 + (x+1) \cdot 2(x-2)$	
	=(x-2)(x-2+2x+2)	
	=(x-2)(3x)	
	f'' = (x - 2)3 + (3x)	3 marks for correct solution
	=6x-6	
	=3(x-2)	1 mark for correct
	Solving $f'(x) = 0$, we have $3(x-2) = 0$ x = 2 or 0	first derivative 1 mark for finding
	at $x = 2$	1 mark for finding
	f'' = 6(2) - 6	min with explanation
	= 6	
	> 0	
	\Rightarrow Local min turning point at (2,0)	
	at x = 0	
	f'' = 6(0) - 6	
	= -6	
	< 0	
	\Rightarrow Local max turning point at (0,4)	

MA12-3	c) i) Length of each side of the square base = diameter of the circular base = 2r Surface Area:	1 mark for showing <i>h</i> correctly
	$2(2r)^2 + 4(2rh) = 216$ 27 r^2	
	$h = \frac{2r - r}{r}$	
	ii) Let $V \text{ cm}^3$ be the volume of the cylinder.	1
	$V = \pi r^2 h$	correctly
	$=\pi r^2 \cdot \frac{27-r^2}{r}$	
	$=27\pi r-\pi r^3$	
	iii) $\frac{dV}{dr} = 27\pi - 3\pi r^2$	3 marks for correct solution
	$\frac{dr}{dr^2} = -6\pi r$	1 mark for correct first and second derivative
	Solving $\frac{dV}{dr} = 0$, we have $r = 3$ or -3	1 mark for finding <i>r</i>
	$r = 3 \ (r > 0)$	1 mark for showing max volume of <i>r</i>
	$\therefore \frac{d^2 V}{dr^2} = -6\pi(3) < 0$	
	$\therefore \qquad V \text{ attains its maximum at } r = 3.$ $\therefore \qquad \text{The required value of } r \text{ is } 3.$	
MA11-1	d) $y = x^2 + ax + b$	
	$\frac{dy}{dx} = 2x + a$	
	:. M_T at $x = 0, \frac{dy}{dx} = \frac{20-5}{5, 0} = 3$	2 marks for correct solution
	2(0) + a = 3	1 mark for correct derivative
	$a = \frac{3}{2}$	1 mark for correct a
	Since (0, 5) lies on curve: $\therefore v = x^2 + ax + b$	
	$5 = 0^2 + a \times 0 + b$	
	$\therefore b = 5$	

2022 Y12 Trial Maths Advanced			
Question 12 Solutions and Marking Guidelines			
Outcomes Addressed in this Question			
MA12-7 -appli	es the concepts and techniques of indefinite and definite integrals in the solution of problem	ms	
Outcome	Solutions	Marking Guidelines	
MA12-4	(a) (i) Given an Arithmetic Series with $T_{10} = 29$ and $T_{15} = 44$, a + 9d = 29 [1] and $a + 14d = 44$ [2] Subtracting, $5d = 15$ \therefore common difference $d = 3$ (ii) Serie $d = 2$ into [1]	1 mark for correct answer	
	Sub $d = 3$ into [1], a + 27 = 29 \therefore first term is 2 (iii) Using $S_n = \frac{n}{2} (2a + (n-1)d)$,	1 mark for correct answer	
	$S_{85} = \frac{85}{2} (2(2) + (85 - 1)3) = 10880$ (b) Given $(2^{1} + 3) + (2^{2} + 3) + (2^{3} + 3) + (2^{4} + 3) +$	1 mark for correct answer	
MA12-4	$= (2^{n} + 3) + (2^{n} + 3) + (2^{n} + 3) + (2^{n} + 3) +n times)$ $= (2^{1} + 2^{2} + 2^{3} + 2^{4} +) + (3 + 3 + 3 + 3 +n times)$ $(2^{1} + 2^{2} + 2^{3} + 2^{4} +) is a GP with a = 2, r = 2$ $\therefore Sum S_{n} = \left(\frac{2(2^{n} - 1)}{2 - 1}\right) = 2(2^{n} - 1) = 2^{n+1} - 2$ (3 + 3 + 3 + 3 +n times) is an Arithmetic Series with a = 3 and d = 0 $\therefore Sum S_{n} = 3n$ $\therefore Total Sum = 2^{n+1} - 2 + 3n$	2 marks for correct solution 1 mark for substantial progress towards solution	
MA12-4	(c)(i) Arithmetic Series 5+6+7+8++n So $a = 5$ $d = 6-5 = 1$ $S_n = \frac{n}{2} [a + l]$ $= \frac{n}{2} [5 + (n + 4)]$ $= \frac{n}{2} (n + 9)$ $= \frac{1}{2} n(n + 9)$	 mark for establishing series and using correct formula mark for correct answer 	

	(ii)	1 mark for setting up
	$S_n = \frac{1}{2}n(n+9)$	the correct quadratic
MA12-4		equation
	$300 = \frac{1}{2}n(n+9)$	
	$600 = n^2 + 9n$	1 mark for correct
	$n^2 + 9n - 600 = 0$	answer
	$n = \frac{-9 \pm \sqrt{81 - 4} \times 1 \times -600}{1 \times 10^{-6}}$	
	n = 20.4 or - 29.4	
	n = 20.4 or $= 29.4So Jayden can make 20 complete rows$	
	So vaj den can make 20 complete 10.03.	
	(d)(i) For competition particle to have a limiting sum	
MA12-4	$ T_{T_{i}} $	1 mark for showing $ r < 1$
	$\left \frac{T_2}{T_1}\right < 1$	
	$\sqrt{7} = 2$	
	$\frac{\sqrt{r-2}}{1} \approx 0.6$	
	\therefore $ r < 1$	
	∴ has a limiting sum	
	(ii)	
MA12-4	$S = \frac{1}{1-r}$	
	$=\frac{1}{1-(7-2)}$	1 mark for correct
	$\Gamma = (\mathbf{N}^{T} - \mathbf{Z})$	substitution
	$=\frac{1}{2} \times \frac{3+\sqrt{7}}{2+\sqrt{5}}$	
	$\frac{3-\sqrt{7}}{5+\sqrt{7}}$	
	$=\frac{3+\sqrt{7}}{2-7}$	1 mark for correct
	9-7	rationalised answer
	$=\frac{3+\sqrt{7}}{2}$	
	(\mathbf{e})	
	$\int_{0}^{2} 2x^{2} (x^{3} - 8)^{3} dx$	3 marks for correct
MA12-7	$\begin{bmatrix} \mathbf{J}_{0} & (\mathbf{J}_{1}) \\ 2 \mathbf{f}_{2}^{2} \mathbf{c}_{2}^{2} \mathbf{c}_{3}^{2} \mathbf{c}_{3} \end{bmatrix}^{3} \mathbf{c}_{1} \mathbf{c}_{2} \mathbf{f}_{2}^{2} \mathbf{c}_{3}^{2} \mathbf{c}_{3$	solution
	$= \frac{1}{3} \int_0^3 3x^2 (x^3 - 8) dx \qquad \text{using } \int f(x) \lfloor f(x) \rfloor dx = \frac{1}{n+1} \lfloor f(x) \rfloor$	2 marks for making
	$2((x^3-8)^4)^2$	toward the solution
	$\left = \frac{-}{3} \left \frac{\sqrt{-7}}{4} \right \right $	1 month for matring
	$\begin{pmatrix} & J_0 \\ ((z_2 - z)^4 \end{pmatrix} = ((z_2 - z)^4)$	some progress
	$=\frac{2}{2}\left \frac{(2^{3}-8)}{4}\right -\frac{2}{2}\left \frac{(0^{3}-8)}{4}\right $	towards the solution
	$\begin{bmatrix} 3 & 4 \\ 4 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 4 \end{bmatrix}$	
	$=\frac{2}{2}(0)-\frac{2}{2}(1024)$	
	$\begin{array}{c} 3 \\ 2048 \end{array}$	
	$=-\frac{23}{3}$	

Year 12 Mathematics AdvancedAssessment Task 4 2022				
Question No. 13 Solutions and Marking Guidelines				
Outcomes Addressed in this Ques	stion			
MA12-8 solves problems using appropriate statistical processes				
Solutions	Marking Guidelines			
(1)				
ſ ⁴	Award 2 marks for			
$k(x-1)^2 dx = 1$	the correct solution.			
J ₂				
ſ ⁴	Award 1 mark for			
$k \int (x-1)^2 dx = 1$	substantial progress			
	towards the solution.			
$[(x-1)^{3}]^{4}$				
$k \left \frac{1}{2} \right = 1$				
$\left(\begin{array}{c} 1 \end{array} \right)$				
$k\left[9-\frac{1}{3}\right]=1$				
(3)				
$k\left(\frac{26}{26}\right) = 1$				
3				
$k = \frac{1}{26}$				
20				
(ii)				
C X				
$CDE = \int \frac{3}{3}(x-1)^2 dx$	Award 2 marks for			
$J_{2} = J_{2} = \frac{1}{26} J_{2} = \frac{1}{$	the correct solution.			
	Award 1 mark for			
$=\frac{3}{(x-1)^{3}}$	substantial progress			
$26 \begin{bmatrix} 3 \end{bmatrix}_2$	towards the solution.			
$=\frac{3}{(x-1)^{3}}-\frac{1}{(x-1)^{3}}$				
1				
$=\frac{1}{1}\left[(x-1)^{3}-1\right]$				
26				
(11) $(r-1)^{3}-1$				
$\frac{(x-1)}{x} = 0.75$	Award 2 marks for			
26	the correct solution.			
$(x-1)^3 - 1 = 19.5$				
	Award 1 mark for			
$(x-1)^{5} = 20.5$	substantial progress			
x - 1 = 2.736851	solution.			
= -2.726951				
x = 3.730831				
$r \sim 3.739$				

b)

(i)

$$-1 = \frac{x - 25.8}{4.2}$$

$$x = 21.6$$
(ii)
From z = score - 1 to mean (z = score 0)

$$= \frac{1}{2} \cdot 68\% = 34\%$$
From mean (z = score 0) to z = score 3

$$= \frac{1}{2} \cdot 99.7\% = 49.85\%$$
Total = $34\% + 47.85\%$
= 83.85%
(c)
 $P(4.1 \le X \le 4.8) = \frac{4.8 - 4.1}{7 - 4}$
 $= \frac{7}{30}$
(d)
 $-1.28 = \frac{200 - \mu}{7.8}$
 $200 - \mu = -9.984$
 $\mu = 209.984$
 $\mu = 210g$ (*nearest whole value*)
Award 1 mark for the correct solution.
Award 2 marks for the correct solution.

(e)

(i)

$$F(x) = \int_{0}^{x} \frac{6}{125} (5x - x^{2}) dx$$

$$= \frac{6}{125} \left[\frac{5x^{2}}{2} - \frac{x^{3}}{3} \right]$$

$$P(X \le 2) = F(2)$$

$$P(X \le 2) = \frac{6}{125} \left(\frac{5}{2} \cdot (2)^{2} - \frac{(2)^{3}}{3} \right)$$

$$P(X \le 2) = \frac{44}{125}$$
(ii)
Fails in two years $= \frac{44}{125} = P(B)$
Does not f ail $= 1 - \frac{44}{125}$

$$= \frac{81}{125} = P(B')$$

$$P(BB') + P(B'B) = \frac{44}{125} \cdot \frac{81}{125} + \frac{81}{125} \cdot \frac{44}{125}$$

$$= \frac{7128}{15625}$$
Award 2 marks for the correct solution.
Award 1 mark for substantial progress towards the correct solution.

Year 12	Mathem	atics Advanced		Assessment Task 4 2022 HSC
Question No. 14 Solutions and Marking Guidelines				
Outcomes Addressed in this Question				
Statistics and	nd Bivariate Data Analysis	MA-S2		
(S2.1 Data	and summary statistics; S2	<u>2 Bivariate Data An</u>	alysis)	
Part	No. of Very 11 students of	Solutions	. 1.40	Marking Guidelines
(a)	NO. OF YEAT IT Students at	bove $1/5$ cm = 25% x	(140)	2 marks: correct
		= 35		solution.
	as 50% of Year 12 studen	ts are above 1/5cm		
				<u>1 mark:</u> correctly
	$50\% \times \text{No. Year } 12 \text{ stude}$	ents = 35		identifies number of
	No. Year 12 stude	ents = 70		above 175cm or
				equivalent merit
				equivalent ment
(b) (1)	By calculator, to 2 decima	l places		<u>2 marks</u> : correct
	A = 22.10			solution
	B = -2.13			
	Least Squares Regression	Line		<u>I mark:</u> correct A or
	y = Bx + A	Line		form $y = Ay + B$
	v = -2.13x + 22.10			$\int \frac{1}{y} = Ax + B$
	Note: y is the TV hours an	nd x is the exercise h	ours	
(b)(ii)	y = -2.13x + 22.1	10		<u>2 marks</u> : correct
	15 = -2.13x + 22.1	10		solution
	15 - 22.10 = -2.13x		1 marks significant	
	-7.1 = -2.13x		<u>I mark.</u> Significant progress made	
	-71			towards solution
	$x = \frac{7.1}{-2.13}$			
	x - 3.3			
	$\lambda = 5.5$			
	Approximately 3.3 hours			
	11 5			
(c)				
	Class centre (\$'000)	Frequency		<u>2 marks</u> : correct
	375	30		solution
	385	50		
	395	70		1. 1. 1. 1. 1.
	405	50		<u>I mark</u>: significant
		50		correct solution
	$(375 \times 30) + (385 \times 50) + (395 \times 70) + (405 \times 50)$			
	$\overline{x} = \frac{(575 \times 50) + (555 \times 50) + (555 \times 70) + (405 \times 50)}{200}$			
	# 202	200		
	= \$392			
	Moon House Drive	\$302 000		
	\dots we all nouse price = 3	¢392 000		

(d) (i)	From calculator: $\overline{x} = 3.1$ $\sigma = 0.9433981132$	<u>2 marks</u> : correct mean and standard deviation
		<u>1 mark</u> : either mean or standard deviation correct
(d)(ii)	Adding 9 to the set of scores and recalculating gives $\bar{x} = 3.\dot{6}\dot{3}$ $\sigma = 1.919882917$ so, both the mean and the standard deviation increase.	2 marks: correct statements for both mean and standard deviation with justification. 1 mark: correct statements for both mean and standard deviation without justification or correct mean statement & justification or correct standard deviation statement & justification
(e)	Profit will increase as the money spent on advertising increases.	<u>1 mark</u> : correct statement
(f)	Interquartile range $(IQR) = Q_3 - Q_1$ = 16 - 10 = 6 Lower bound = $Q_1 - 1.5 \times IQR$ = 10 - 1.5 × 6 = 1 Upper bound = $Q_3 + 1.5 \times IQR$ = 16 + 1.5 × = 25 \therefore Range = 25 - 1 = 24	2 marks: correct solution 1 mark: significant progress towards correct solution

Year 12 Mathematics Advanced As		Assessment Task 4 2022 HSC		
Question No. 15 Solutions and Marking Guidelines				
Outcomes Addressed in this Question				
Trigonome	tric Functions MA-C3 C4 & T3	Internation and analisations)		
(15 Irig lu Port	Solutions	<u>Marking Cuidelines</u>		
	Solutions			
(a)	$\cos\alpha = -\frac{4}{5}, \ \sin\alpha < 0 \qquad \qquad$	<u>2 marks:</u> correct solution with		
	$\therefore \alpha \text{ is in } 4^{\text{th}} \text{ quadrant} \qquad -3 23$	justification		
	$\tan \alpha = \frac{-3}{-4}$	<u>1 mark:</u> substantially correct solution		
	ie $\tan \alpha = \frac{3}{4}$			
(b)	$2\sin x\cos x = \sin x$			
	$2\sin x\cos x - \sin x = 0$	<u>3 marks</u> : provides		
	$\sin x (2\cos x - 1) = 0$	correct solution		
	$\sin x = 0 \qquad 2\cos x - 1 = 0$	2 marks: correctly		
	5π 1	solves one case, or		
	$x = 0, \pi, \frac{1}{3}$ $\cos x = \frac{1}{2}$	equivalent merit		
	$\pi 5\pi$	1 mark: identifies		
	$x = \frac{1}{3}, \frac{1}{3}$	both cases to be		
	so $x = 0, \frac{\pi}{2}, \pi, \frac{5\pi}{2}, 2\pi$	considered or finds		
	3 3	one correct answer, or		
		equivalent merit.		
(c)(i)	A(0,2)			
(()(1)		<u>1 mark:</u> correct answer		
(c)(ii)	$\int_{3\pi}^{2\pi} 2\cos x dx = \left[2\sin x \right]_{3\pi}^{2\pi}$			
		2 marks: correct		
	$=2\sin 2\pi - 2\sin \frac{3\pi}{2}$	solution		
	(2)	1 mark: correct		
	=0-(-2)	primitive or		
	=2	equivalent merit		
(a)(jiji)				
(c)(m)	C			
		<u>1 mark:</u> correct		
(a)(iv)	Area = 4 × 2 (area A = area C = 2 × area B)	answer		
(C)(IV)	$n = 1 \times 2 \qquad (m = m = m = 0 = 2 \times m = m)$			
	=8 unit ²	1 mark: correct		
		answer		

(c)(v)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 2\cos x \, dx = 2 - 2 \times 2 \qquad (\operatorname{arca } \Lambda - \operatorname{arca } B)$$

$$= -2$$
(d)
$$IHS = \frac{\sec \theta - \sec \theta \cos^4 \theta}{1 + \cos^2 \theta}$$

$$= \frac{\sec \theta (1 - \cos^2 \theta)}{1 + \cos^2 \theta}$$

$$= \frac{\sec \theta (1 - \cos^2 \theta)}{1 + \cos^2 \theta}$$

$$= \frac{1}{\cos \theta} \sin^2 \theta$$

$$= \frac{1}{\cos \theta} \sin^2 \theta$$

$$= \sin \theta \tan \theta$$

$$= RIS$$
(c)
$$\frac{d}{dx} \left(\frac{\sin x}{x} \right) = \frac{u^4 v - v^4 u}{u^2}$$

$$= \frac{(\cos x) \times x - 1 \times \sin x}{x^2}$$

$$= \frac{x \cos x - \sin x}{x^2}$$

$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{correct}$$
Solution
$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{correct}$$
Solution
$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{correct}$$

$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{correct}$$
Solution
$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{correct} : \operatorname{solution}$$

$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{marks} : \operatorname{correct} : \operatorname{solution}$$

$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{marks} : \operatorname{marks} : \operatorname{correct} : \operatorname{solution}$$

$$\frac{2 \operatorname{marks}}{x^2} : \operatorname{marks} : \operatorname{marks$$

Year 12	Mathematics Advanced	Assessment Task 4 2022 HSC	
Question No. 16 Solutions and Marking Guidelines			
Outcomes Addressed in this Question			
Exponentia	l and Logarithmic Functions MA-C3 & C4	、 、	
(C3.1, C3.2	2, C4.1 & C4.2 Differentiation, Integration and applications.	.) Marking Cuidalinas	
Part	Solutions	Marking Guidelines	
(a)	$y = 7^x$	2 marks: correct	
	In logarithmic form	solution	
	$x = \log_{\tau} y$		
	Changing the base	<u>1 mark:</u> substantially	
	ln v	correct solution	
	$x = \frac{my}{\ln 7}$		
	dx = 1		
	$\frac{du}{dv} = \frac{1}{\ln 7} \cdot \frac{1}{v}$		
	1		
	$=\frac{1}{v \ln 7}$		
	()		
	$\therefore \frac{dy}{dx} = y \ln 7$ since $\frac{dy}{dx} = \frac{1}{(dx)}$		
	$\begin{bmatrix} a \\ a \\ b \end{bmatrix}$		
	$= 7^{\prime} \ln 7$ as required		
(b)	- 3	3 marks: provides	
	$a = -\frac{1}{t^2}$	correct solution	
	$y = \frac{3}{2} + c$		
	$v = \frac{1}{t}$	<u>2 marks</u> : makes	
	but when $t = 0.5$, $v = 6$	significant progress	
	ie $6 = \frac{3}{2} + c$	towards solution	
	0.5 + 0.5	<u>1 mark</u> : makes	
	6 = 6 + c	limited progress	
	c = 0	towards solution	
	$\therefore y = \frac{3}{2}$		
	$x = 3\ln t + c_2$		
	but when $t = 0.5$, $x = 1$		
	ie. $1 = 3\ln(0.5) + c_2$		
	$=3\ln\left(\frac{1}{2}\right)+c_2$		
	$3\ln 2 + c$		
	$= -3m2 + c_2$		
	$c_2 = 1 + 3 \ln 2$		
	$\dots x = 3 \dots t + 3 \dots 2 + 1$		

(c)(i)
$$\begin{cases} e^{x^{2}} - 2 = 0 \\ e^{x^{2}} = 2 \\ \ln e^{x^{2}} = \ln 2 \\ (x-1)\ln e = \ln 2 \\ x-1 = \ln 2 \\ \therefore x-1 + \ln 2 \approx 1.69 \end{cases}$$
(c)(ii)
$$\begin{cases} \frac{1}{2} e^{x^{2}} - 2dx = \left[e^{x^{2}} - 2x\right]_{x}^{2} \\ = e^{-4} - 1 + 2 \\ = e^{-3} \end{cases}$$
(c)(ii)
$$\begin{cases} \frac{1}{2} e^{x^{2}} - 2dx = \left[e^{x^{2}} - 2x\right]_{x}^{2} \\ = e^{-4} - 1 + 2 \\ = e^{-3} \end{cases}$$
(c)(iii) The value of the integral, $e^{-3} < 0$ since between $x = 1$ and $x = 2$ (at $x = 1 + \ln 2$) is the curve cuts the x axis, i.e., some of the area is given areas. Actual area under the curve would need to be calculated by evaluating two integrals (between $x = 1$ and $x = 1 + \ln 2$ and between $x = 1 + \ln 2$ and between $x = 1 + \ln 2$ and between $x = 1 + \ln 2$ and $x = 2$) and adding their absolute values. (a)
$$\begin{cases} y = xe^{t} \\ \frac{dy}{dx} = xe^{t} + e^{t} \\ = (x+1)e^{t} \end{cases}$$
When $x = \ln 2$
(b)
$$\begin{cases} y = xe^{t} \\ \frac{dy}{dx} = (1 + \ln 2)e^{x^{2}} \\ = ((1 + \ln 2) \times 2) \\ \therefore \text{ Gradient} = 2((1 + \ln 2)) \end{cases}$$
(e) (ii)
$$f(x) = e^{2x}(1 - x)$$
(i)
$$\frac{x = \frac{h}{2}(a + b) \text{ with 4 applications} \\ -\frac{1}{2}[(0, 01 + 0.05) + (0.05 + 0.27) + (0.27 + 1) + (1 + 0)] \\ -\frac{1}{2} \times 2.65 \\ = 1.325 \text{ units}^{t} \end{cases}$$
(c) (ii)
$$\frac{1}{2} \frac{\text{marks}}{2} \text{ sufficant} \\ \frac{1}{\text{progress towards}} \text{ correct} \\ \text{solution} \end{cases}$$

(e) (iii)	Answer is an underestimate since the first three applications are very small overestimates (since part of each trapezium sits outside the curve) and the final application is a very large underestimate as it gives the area of a triangle sitting inside the curve.	<u>1 mark:</u> correct explanation